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OUNDATIONAL QUESTIONS INSTITUTE



The EPR paradox

MAY 15, 1935 PHYSICAL REVIEW VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EinsteIN, B. PopoLsky AND N. ROSEN, Instilute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding quantum mechanics is not complete or (2) these two
to each element of reality. A sufficient condition for the quantities cannot have simultaneous reality. Consideration
reality of a physical quantity is the possibility of predicting  of the problem of making predictions concerning a system
it with certainty, without disturbing the system. In on the basis of measurements made on another system that
quantum mechanics in the case of two physical quantities had previously interacted with it leads to the result that if
described by non-commuting operators, the knowledge of (1) is false then (2) is also false. One is thus led to conclude
one precludes the knowledge of the other. Then either (1) that the description of reality as given by a wave function
the description of reality given by the wave function in 18 not complete.
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the description of reality given by the wave function in

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EinsteIN, B. PopoLsky AND N. ROSEN, Instilute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
1s not complete.

Completeness can be recovered by adding hidden variables to the model ‘ Hidden Variable Theories (HVTS)

What if the Locality assumption is added? ‘ Local Hidden Variable Theories (LHVTS)
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Quantum Mechanics LHVTs
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» Epistemic probability, due to our ignorance

» Non-epistemic probabilistic description of
on the hidden variables;

the laws of nature;

» Classical determinism recovered on each

» Uncertainty principles on non-commuting
variable of the system,;
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Quantum Mechanics

» Non-epistemic probabilistic description of
the laws of nature;

» Uncertainty principles on non-commuting
observables;

» Traces of incompleteness: non-locality,
macro-objectivation issue, wave-function
collapse...

Bell Inequalities

LHVTs

» Epistemic probability, due to our ignorance
on the hidden variables;

» Classical determinism recovered on each
variable of the system,;

» Free from some issues related to Quantum
Mechanics (macro-objectivation, non-locality,
wave-function collapse...)
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Bell Inequalities

Quantum Mechanics LHVTs

» Non-epistemic probabilistic description of » Epistemic probability, due to our ignorance

the laws of nature; on the hidden variables;

» Uncertainty principles on non-commuting » Classical determinism recovered on each
observables; variable of the system,;

» Traces of incompleteness: non-locality, > Free from some issues related to Quantum
macro-objectivation issue, wave-function Mechanics (macro-objectivation, non-locality,
collapse... wave-function collapse...)

J. S. Bell [Physics Physique Fizika 1, 195, (1964)]: LHVTS must satisfy
some inequalities that can be violated in Quantum Mechanics
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The CHSH inequality

Bell inequality 4-settings reformulation by Clauser, Horne, Shimony and Holt,
particle 1 allowing easier experimental tests [PRL 24,549 (1970)]:

S| =|C(a1,B1) — Clay, B2) + Clas, 51) + Clag, B2)| < 2

particle 2
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The CHSH inequality

Bell inequality 4-settings reformulation by Clauser, Horne, Shimony and Holt,
particle 1 allowing easier experimental tests [PRL 24,549 (1970)]:

S| =[C(a1, 1) — Clay, B2) + Clag, 1) + Caz, B2)| < 2

LHVTS:
Clagsi) = [ dNo (. o (G V()

A

particle 2
Tsirelson’s bound:

QM
[SM] < 2v/2 Quantum Mechanics:

Clay, Br) = (02(j) @ 0. (k)

Wave function collapse
+ ‘ Each pair can give information on just one of the correlators constituting S:

Uncertainty principle it is not possible to estimate the entire Bell parameter at the single pair level.
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The CHSH inequality

Bell inequality 4-settings reformulation by Clauser, Horne, Shimony and Holt,
particle 1 allowing easier experimental tests [PRL 24,549 (1970)]:

S| =[C(a1, 1) — Clay, B2) + Clag, 1) + Caz, B2)| < 2

LHVTS:
Clagsi) = [ dNo (. o (G V()

A

particle 2
Tsirelson’s bound:

QM
[SM] < 2v/2 Quantum Mechanics:

Clay, Br) = (02(j) @ 0. (k)

Wave function collapse
+ ‘ Each pair can give information on just one of the correlators constituting S:

Uncertainty principle it is not possible to estimate the entire Bell parameter at the single pair level.

Unless...
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From projective measurement...

Projective measurements in sequence:
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From projective measurement...

Projective measurements in sequence:
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From projective measurement...

Projective measurements in sequence:

i, i, P
po= ) = [ DA T [, (Hpliy)] = Prob(u, ) Prob(uylo)

The wave function collapse forbids to measure non-commuting observables on the same quantum state.
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From projective measurement...

Projective measurements in sequence:

~~

Hk Hn
— ) = [y TR e [M, (Tpie) ] = Prob(u ) Prob(iiclp)
The wave function collapse forbids to measure non-commuting observables on the same quantum state.

Entangled photon B 9 To estimate S, Alice and Bob have to
ource .
° randomly choose their measurement

settings in each experimental run.
Coincidence
c ()Iltl oller
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...to Weak Measurements

Weak Measurements [Aharonov, Albert & Vaidman, PRL 60 (1988)] - little information is extracted from a single measurement
event, but the state does NOT collapse: incompatible measurements on the same quantum state are allowed!
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...to Weak Measurements

Weak measurements [Aharonov, Albert & Vaidman, PRL 60 (1988)] - little information is extracted from a single measurement
event, but the state does NOT collapse: incompatible measurements on the same quantum state are allowed!

Single
photon

W)

Birefringent
crystal

Birefringent
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...to Weak Measurements

Weak measurements [Aharonov, Albert & Vaidman, PRL 60 (1988)] - little information is extracted from a single measurement
event, but the state does NOT collapse: incompatible measurements on the same quantum state are allowed!
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...to Weak Measurements

Weak measurements [Aharonov, Albert & Vaidman, PRL 60 (1988)] - little information is extracted from a single measurement
event, but the state does NOT collapse: incompatible measurements on the same quantum state are allowed!

UJ} — € 19a (:52)®1$ gm;9y<<1, ||(9)— ( )
Single @

A

If no post-selection is made, the result of the weak
measurement corresponds to the expectation value
of the measured observable:

Birefringent
crystal

S

(X) =g (Tl(a2))  (Y) = g, (T(v1))

Birefringent
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Weak measurements [Aharonov, Albert & Vaidman, PRL 60 (1988)] - little information is extracted from a single measurement
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...to Weak Measurements

Weak measurements [Aharonov, Albert & Vaidman, PRL 60 (1988)] - little information is extracted from a single measurement
event, but the state does NOT collapse: incompatible measurements on the same quantum state are allowed!

(7 — e~ tgyll(a)®Py, R R . .(0) +1
J — 6_?:99:1_[(052)®Px 9z, Gy < ]-7 H(Q) — ( )

Us
Single @

If no post-selection is made, the result of the weak
measurement corresponds to the expectation value
of the measured observable:

Birefringent

crystal <X> = (r <H(Oc52)> <Y> — gy<H(al)>
p,?L';i;-,;enﬁni (XY) = gogy (H(a2)I(1))
’ 77040?(62/"
976) Next step: from single photons to entangled pairs
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Single-pair measurement of S: the setup
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Single-pair measurement of S: the setup

[V-) = \%UHAVB) — |HpVa))

Visibility: ¥V = 0.983 £+ 0.001 o PeeT
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Single-pair measurement of S: the setup
[Y-) = L(IJLUJ/B) — |HpVa)) Cla, B) = 4<éjA ®&B) 5 (ja) 5 (i)

2
e \f s 9ée;aY¢ 9e;a 9é1
Visibility: ¥V = 0.983 + 0.001 o P

+ 1

J =12 &G=X; &L=Y

Fabrizio Piacentini, Quantum Sailing, Isola d’Elba, 14-20 May 2023



Single-pair measurement of S: the setup

[_) = i(|HAVB) — [HpVa)) Clay, B) = 4<éjA ® &) B 2<éjA> B 2<§lB> i

2
e \f s 9ée;aY¢ 9e;a 9é1
Visibility: ¥V = 0.983 + 0.001 o P

j,l:1,2; flzX; ngY

4-dimensional coincidence
counts tensor:

N(XA,XB,YA?YB)
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[Y-) = L(IJLUJ/B) — |HpVa)) Cla, B) = 4<éjA ®&B) 5 (ja) 5 (i)

2
e \f s 9ée;aY¢ 9e;a 9é1
Visibility: ¥V = 0.983 + 0.001 o P

+ 1

j,l:1,2; flzX; ngY

4-dimensional coincidence
counts tensor:

AT
N(XA,XB,YA?YB)

% S = C(ay, B1) —|Clay, B2)|+|C (a2, B1)|+|C (a2, B2)
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Single-pair measurement of S: results
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Single-pair measurement of S: results
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Single-pair measurement of S: results
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What about the two-photon state after the measurement?

Real part Imaginary part
Tomographic reconstruction of the two-photon 0.5
state before the Bell parameter measurement

0.0 s 0.0
— —
ﬂ.—___,
e [ —
-0.5
-0.5
V\é\;’ V\Ii{iv
Virzi et al., HV Hﬂv
. HH
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What about the two-photon state after the measurement?

Real part Imaginary part
Tomographic reconstruction of the two-photon 0.5 F— 0.990 -
state before the Bell parameter measurement p = 0.981 |
0.0 e 0.0
—. e — - —
e —
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-0.5 2 -
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Virzi et al., e . PPy /I i
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What about the two-photon state after the measurement?

Real part Imaginary part
Tomographic reconstruction of the two-photon 0.5 I — 0.990 .
state before the Bell parameter measurement P m 0.981 |
.. : 0.0 i 0.0
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| | e —
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What about the two-photon state after the measurement?

Tomographic reconstruction of the two-photon
state before the Bell parameter measurement

Negativity: A" = 0.981

Concurrence: C™ = (0.979

Virzi et al.,
arXiv:2303.04787 (2023) HH

Tomographic reconstruction of the two-photon
state after the Bell parameter measurement

Negativity: N°U' = (0.937

Concurrence: C°"t = ().894

Real part

Imaginary part

F = 0.990 0.5
P =0.981

s 0.0
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HH
VH vV
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P =0.939
s — 0.0
-0.5
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What about the two-photon state after the measurement?
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Tomographic reconstruction of the two-photon v F = 0.956 0.5
state after the Bell parameter measurement P = 0.939
Negativity: A©u = 0.937 o e
Concurrence: C°"' = ().894 -0.5
v V\év

Our measurement procedure induces just a tiny decoherence on the initial state: the entanglement is still here!
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» We realized the first single-pair Bell inequality test, extracting a Bell parameter value from each entangled pair.
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perform at once all the (incompatible) measurements needed to estimate S pair-by-pair.
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perform at once all the (incompatible) measurements needed to estimate S pair-by-pair.

» No need for Alice and Bob to choose among different measurement bases: our approach stretches the concept
of counterfactual definiteness, avoiding counterfactual reasoning of other Bell inequalities tests.

» Weak measurements allow avoiding the wave function collapse (at the cost of some negligible decoherence),
hence the initial state remains almost unaltered: non-invasive entanglement certification is achieved!

» Not having to sacrifice quantum resources to certify entanglement, our method could boost the performances of
guantum technology protocols (e.g., Ekert’s protocol [Ekert, PRL67, 661 (1991)]0r device-independent realizations).
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Summary
» We realized the first single-pair Bell inequality test, extracting a Bell parameter value from each entangled pair.

» By resorting to a sequence of two weak measurements on each photon constituting the entangled pair, we
perform at once all the (incompatible) measurements needed to estimate S pair-by-pair.

» No need for Alice and Bob to choose among different measurement bases: our approach stretches the concept
of counterfactual definiteness, avoiding counterfactual reasoning of other Bell inequalities tests.

» Weak measurements allow avoiding the wave function collapse (at the cost of some negligible decoherence),
hence the initial state remains almost unaltered: non-invasive entanglement certification is achieved!

» Not having to sacrifice quantum resources to certify entanglement, our method could boost the performances of
guantum technology protocols (e.g., Ekert’s protocol [Ekert, PRL67, 661 (1991)]0r device-independent realizations).

> Next step: implementation of novel quantum foundations investigation tests involving measurements on non-

commuting observables, e.g. the one connected to the Relativistic Independence condition [Carmi & Cohen, Sci. Adv.
5, eaav8370 (2019)].
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Single-pair measurement of the Bell parameter
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Bell inequalities are one of the cornerstones of quantum foundations, and fundamental tools for quantum technologies. Recently,
the scientific community worldwide has put a lot of effort towards them, which culminated with loophole-free experiments.
Nonetheless, none of the experimental tests so far was able to extract information on the full inequality from each entangled
pair, since the wave function collapse forbids perfarming, on the same quantum state, all the measurements needed for
evaluating the entire Bell parameter. We present here the first single-pair Bell inequality test, able to obtain a Bell parameter
value for every entangled pair detected. This is made possible by exploiting sequential weak measurements, allowing to
measure non-commuting observables in sequence on the same state, on each entangled particle. Such an approach not only
grants unprecedented measurement capability, but also removes the need to choose between different measurement bases,
intrinsically eliminating the freedom-of-choice loophole and stretching the concept of counterfactual-definiteness (since it allows
measuring in the otherwise not-chosen bases). We also demonstrate how, after the Bell parameter measurement, the pair under
test still presents a noteworthy amount of entanglement, providing evidence of the absence of (complete) wave function collapse
and allowing to exploit this quantum resource for further protocols.
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Weak values

Weak measurements [Aharonov, Albert & Vaidman, PRL 60 (1988)]: little information is extracted from a single measurement
event, but the state does NOT collapse.
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Joint and Sequential Weak Values

Weak values «challenge one of the canonical dicta of QM: that non commuting observables cannot be
simultaneously measured»

«the fact that one hardly disturbs the systems in making WM means that one can in principle measure different
variables in succession» [Mitchison, Jozsa and Popescu, PRA76 (2007)]

e _ ™~ / Seguential weak measurement \
Joint weak measurement Mitchinson et al.,, PRA76, 062105
Reschetal., PRL92, 130402 (2004) (2007)
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Detailed experimental setup

Fabrizio Piacentini, Quantum Sailing, Isola d’Elba, 14-20 May 2023



Detailed experimental setup

Weak measurements and detection
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Negativity and Concurrence estimation

Negativity: pL: partial transpose of p with respect to the subsystem A
N(p) = ”pFAHl 1 | X ||y = Tr (\/XTX): trace norm of the operator X
Concurrence:

C(p) = Max(0, A\ — Ao — A3 — \y) Ai ¢ R eigenvalues R = \/\/ﬁ(ay ® 0y)p*(oy @ oy)\/Pp

We suppose for our state a density matrix p:
N™ =C™ =0.983 £ 0.001

0 0 0 0 0 0 0 0

0 cos? 0 —cosfsinf 0 0 cos?f 0 0 Nout — cout — ().927 - (0.001
P=P10 —cosfsind sin® 0 0 (1=p) 0 0 sin®f 0

0 0 0 0 0 0 0 0

Negativity and Concurrence can be optimally estimated as [Virzi etal., Sci. Rep.9, 3030 (2019)]:
N(p)=Clp)=LP(+-)+P(—-+)—-P(++)) —P(—-)))
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