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Why is quantum state discrimination important?

● State discrimination = choosing which quantum 
state we have, from some finite set.

● Many physical experiments can be regarded as 
state discrimination.

● Processes can be modelled as quantum operations 
and probes can be described as quantum states.

● We want to discriminate between possible outputs.
● Example: quantum target detection.
● Example: probing a substance with photons to find 

transmission.



Why does state discrimination have ultimate bounds?

● Better measurement devices perform better measurements!
● Classically, we can always perform an arbitrarily good measurement.
● We cannot perfectly distinguish between non-orthogonal quantum states.
● There is an ultimate bound on quantum state discrimination.



Symmetric vs asymmetric state discrimination

● Focus on binary discrimination.
● Two types of errors can occur: false-positives and false-negatives.
● Symmetric discrimination = minimise the average error probability.
● Limited by the Helstrom bound.

● Sometimes, one type of error is worse than the other.
● Asymmetric discrimination = minimise one type of error subject to a bound on 

the other.



Exact solution

● This problem has been exactly solved!
● Quantum Neyman-Pearson relation:

● Optimal measurement operator:



So why study this problem further?

● Quantum Neyman-Pearson relation is implicit.
● The trace norm quantity, tp, can be hard to calculate.
● Difficult to calculate for, in particular: high-dimensional states, multi-copy 

states, continuous variable states.
● Would like bounds in terms of easily calculable quantities.
● Want to use quantities that are multiplicative across tensor products.
● Want to use quantities that can be easily found for Gaussian states.



Asymptotic limit

● Can study the multi-copy problem in the asymptotic limit.
● Define the asymptotic decay rates.

● Quantum Stein’s lemma.

● Quantum Hoeffding bound.



Exact receiver operating characteristic (ROC)

● Can rephrase the quantum Neyman-Pearson relation to get the ROC. 

● Assumes differentiable tp.
● Can replace the gradient with the subgradient.
● We can upper bound and lower bound the ROC using upper and lower 

bounds on tp.
● Sometimes, after substituting in an expression for tp, we can eliminate p.



Fidelity-based bounds

● Trace norm, T, is bounded by the Fuchs-van de Graaf inequalities.
● We can formulate similar bounds on tp.

● The upper bound is exact for pure states.
● This gives bounds on the ROC.

● The upper bound diverges for β close to either 0 or 1.
● Can modify it to give a piecewise bound.



Quantum Chernoff bounds

● Trace norm is bounded by the QCB.

● We can formulate similar bounds on tp.

● Constant asymmetric quantum Chernoff bound (CAQCB). 

● Optimal asymmetric quantum Chernoff bound (OAQCB). 



Comparison of the bounds

ROC for discriminating 
between a pair of states, each 
the result of transmitting one 

mode of a two-mode squeezed 
vacuum, with an average 

photon number (per mode) of 
4, through a thermal loss 

channel. ρ1 (ρ2) is obtained 
using a channel with a 

transmissivity of 0.7 (0.3) and a 
thermal number of 0.4 (0.6).



Multicopy scaling

● Fidelity and Qs are both multiplicative across tensor products.

● The OAQCB for N copies can be expressed in terms of single copy quantities.

● The OAQCB satisfies the quantum Hoeffding bound/quantum Stein’s lemma.



Application examples
● Demonstrating the optimality 

of adaptive measurement 
sequences for pure states.

● Using the fidelity lower bound, 
we show this can be achieved 
with separable 
measurements, where the 
second measurement 
depends on the first result.

● Proving quantum advantage.
● Classical/quantum protocols with 

average photon number 8, discriminating 
between pure loss channels with 
transmissivities of 0.95 and 0.4.



Conclusions

● We give an explicit expression for the ROC in terms of tp.
● We bound tp in terms of easily calculable quantities (fidelity and Qs).
● The fidelity lower bound is tight for pure states.
● The OAQCB scales optimally for multiple copies.


