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Why is quantum state discrimination important?

e State discrimination = choosing which quantum
state we have, from some finite set.

e Many physical experiments can be regarded as
state discrimination.

e Processes can be modelled as quantum operations
and probes can be described as quantum states.

e \We want to discriminate between possible outputs.

e Example: quantum target detection.

e Example: probing a substance with photons to find
transmission.




Why does state discrimination have ultimate bounds?

Better measurement devices perform better measurements!

Classically, we can always perform an arbitrarily good measurement.

We cannot perfectly distinguish between non-orthogonal quantum states.
There is an ultimate bound on quantum state discrimination.
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Symmetric vs asymmetric state discrimination

Focus on binary discrimination.
Two types of errors can occur: false-positives and false-negatives.
Symmetric discrimination = minimise the average error probability.
Limited by the Helstrom bound.
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Sometimes, one type of error is worse than the other.
Asymmetric discrimination = minimise one type of error subject to a bound on
the other.



Exact solution

e This problem has been exactly solved!
e Quantum Neyman-Pearson relation:
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e Optimal measurement operator:
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So why study this problem further?

e Quantum Neyman-Pearson relation is implicit.

e The trace norm quantity, tp, can be hard to calculate.

e Difficult to calculate for, in particular: high-dimensional states, multi-copy
states, continuous variable states.

e \Would like bounds in terms of easily calculable quantities.

e \Want to use quantities that are multiplicative across tensor products.

e \Want to use quantities that can be easily found for Gaussian states.



Asymptotic limit

e Can study the multi-copy problem in the asymptotic limit.
e Define the asymptotic decay rates.
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e Quantum Stein’s lemma.
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e Quantum Hoeffding bound.
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Exact receiver operating characteristic (ROC)

e Can rephrase the quantum Neyman-Pearson relation to get the ROC.
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e Assumes differentiable tp.
e Can replace the gradient with the subgradient.
e \We can upper bound and lower bound the ROC using upper and lower
bounds on tp.

e Sometimes, after substituting in an expression for tp, we can eliminate p.




Fidelity-based bounds

e Trace norm, T, is bounded by the Fuchs-van de Graaf inequalities.
We can formulate similar bounds on tp.
1—2y/p(1 — p)F(p1,p2) <t, < /1 —4p(1 — p)F(p1, p2)?
e The upper bound is exact for pure states.
e This gives bounds on the ROC.
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e The upper bound diverges for 3 close to either O or 1.
e Can modify it to give a piecewise bound.



Quantum Chernoff bounds

e Trace norm is bounded by the QCB.
Qs(p1,p2) =Tr [p:;p}—s] , Qe =Qs,, s.=argming ,1Qs
e We can formulate similar bounds on tp.
t, >1—2p' (1 —p)°Qs

e Constant asymmetric quantum Chernoff bound (CAQCB).
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e Optimal asymmetric quantum Chernoff bound (OAQCB).
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Comparison of the bounds
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ROC for discriminating
between a pair of states, each
the result of transmitting one
mode of a two-mode squeezed
vacuum, with an average
photon number (per mode) of
4, through a thermal loss
channel. p, (p,) is obtained
using a channel with a

transmissivity of 0.7 (0.3) and a

thermal number of 0.4 (0.6).



Multicopy scaling

e Fidelity and Q. are both multiplicative across tensor products.
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e The OAQCB for N copies can be expressed in terms of single copy quantities.
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e The OAQCB satisfies the quantum Hoeffding bound/quantum Stein’s lemma.
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Application examples

e Demonstrating the optimality
of adaptive measurement
sequences for pure states.

pi =pPi1®pi2, F;=F(p1j,p2;)

e Using the fidelity lower bound,
we show this can be achieved
with separable
measurements, where the
second measurement
depends on the first result.
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Proving quantum advantage.
Classical/quantum protocols with
average photon number 8, discriminating
between pure loss channels with
transmissivities of 0.95 and 0.4.



Conclusions

We give an explicit expression for the ROC in terms of tp.

We bound tIO in terms of easily calculable quantities (fidelity and Q).
The fidelity lower bound is tight for pure states.

The OAQCB scales optimally for multiple copies.



