DO MEASUREMENTS IN RET NEED SPACE-TIME DEPENDENT STATES?

BASED ON AN ONGOING WORK BY:
PRANZINI, MANISCALCO, KESKI-VAKKURI

SUMMARY

PROBLEMS WITH MEASUREMENTS IN QFT

&
POSSIBLE SOLUTIONS

PROBLEM OF MEASUREMENTS NON-RELATIVISTIC RELATIVISTIC QUANTUM MECHANICS QUANTUM MECHANICS MEASUREMENT POSTULATE MEASUREMENT

MEASUREMENT
PROBLEM

INTERPRETATIONS

SOLUTION

A PROBLEM OF MEASUREMENTS IN QFT NON-RELATIVISTIC QUANTUM MECHANICS MEASUREMENT MEASUREMENT MEASUREMENT

MEASUREMENT
POSTULATE

MEASUREMENT
PROBLEM

INTERPRETATIONS

SOLUTION

MEASUREMENT
PROBLEM
INTERPRETATIONS

SOLUTION

MEASUREMENT POSTULATE Hr, Pr

POSTULATE

P(me) = Tr[P, Êe]

SELECTIVE AND NON-SELECTIVE MEASUREMENTS

WE PERFORM A MEASUREMENT ON T in p:

S)
$$\rho^{s}(\varepsilon_{\kappa}) = \frac{O^{t}(\varepsilon_{\kappa}) \rho O(\varepsilon_{\kappa})}{Tr[O^{t}(\varepsilon_{\kappa}) \rho O(\varepsilon_{\kappa})]}$$

$$VS) \qquad P \xrightarrow{\text{MEASUREMENT}} P^{NS} = \frac{\sum_{e} \hat{O}^{f}(E_{e}) P \hat{O}(E_{e})}{\text{Tr} \left[\sum_{e} \hat{O}^{f}(E_{e}) P \hat{O}(E_{e})\right]}$$

CAUSAL STRUCTURE

SORKIN'S IMPOSSIBLE MEASUREMENTS SORKIN '93

NON-SELECTIVE MEASUREMENTS (W M, AFFECT M3

FTL SIGNALING

FV VS. DETECTOR - BASED FRAMEWORKS		
	FEWSTER, VERCH '20	POLO-GOMEZ, GARAY MARTIN-MARTINEZ '22
APPARATUS (PROBE)	RELATIVISTIC FIELD	NON-RELATIVISTIC SYSTEM
LÜDERS' RULE	20	YES
TOOLS	AQFT	NRQM + STANDARD QFT

UNBUH- DEWITT DETECTORS

DEWITT '76
SCHLICHT '04

$$\hat{H} = \hat{H}_{D} + \hat{H}_{\phi} + \lambda \left\{ dz \; \chi(z) \int d^{3} \xi \; f_{\varepsilon}(\xi) \; \hat{m}(z) \otimes \hat{\phi}(\chi(z;\xi)) \right\}$$

MEASUREMENT AS A SPACETIME EVENT

MEASUREMENTS (IDW DETECTORS AND PGGHM '22

$$M = \{ \vec{E}_K \}$$

$$\longrightarrow \text{Giving "m_K"}$$

$$\Box = \beta = 1 \phi_0 \times \phi_0$$

$$\square = \begin{cases} P_0 \\ \rho NS \propto \sum_{i} P_i P(E_i) \end{cases}$$

$$\square = \begin{cases} \rho NS \propto \sum_{i} P_i P(E_i) \\ P^S = P(E_K) \end{cases}$$

TWO PROBLEMS WITH CONTEXTUAL STATES

- 1. THE STATE ASSIGNMENT IS CONTEXTUAL
 TO OBSERVERS
- 2. INCONSISTENT N-POINTS ASSIGNMENT RULE

TWO PROBLEMS WITH CONTEXTUAL STATES I THE STATE ASSIGNMENT IS CONTEXTUAL

B CAN USE P.

IN J+(M),

BUT GETS

WRONG PHYSICS!

TWO PROBLEMS WITH CONTEXTUAL STATES

2. STATE HAS SPACE-TIME DEPENDENCE

=D N-POINT FUNCTIONS

TO W (X1,...,Xn)

$$W(x,y) = \langle \phi(x)\phi(y) \rangle$$

$$= \text{Tr} \left[\rho^3 \phi(x)\phi(y) \right]$$

$$W(a,b) = \langle \phi(a) \phi(b) \rangle$$

$$= Tr \left[\rho^{NS} \phi(a) \phi(b) \right]$$

CONTEXTUAL STATES WITH TWO PROBLEMS

TWO PROBLEMS WITH CONTEXTUAL STATES

$$W(x,y) = \langle \phi(x) \phi(y) \rangle$$

$$= T_1 \left[(y) \phi(x) \phi(y) \right]$$

2. STATE HAS SPACE-TIME DEPENDENCE

WITH

TWO PROBLEMS

SOLVES BY N-POINT FUNCTIONS W(x,y) =

CONTEXTUAL STATES

THIS IS ILL-DEFINED

A TENTATIVE SOLUTION: EVENT-DEPENDENT STATES

$$O_A = \{ \beta \mid \forall \hat{L} \text{ with SUPP}(\hat{L}) \in A, \text{ Tr}[\beta \hat{L}] = \text{Tr}[\beta \hat{L}] \}$$
FOR SOME FIDUCIAL PO

(EQUIVALENCE CLASSES OF) STATES ACQUIRE

A SPACE-TIME DEPENDENCE

SOLUTION TO THE FIRST PROBLEM 1. THE STATE ASSIGNMENT IS CONTEXTUAL

WHEN B ENTERS

J+(M_d),

THE FIELD STATE

IS PEDJ+(M_d)

$$W(x,y) = Tr \left[P_A \phi(x) \phi(y) \right]$$
 where $P_A \in \mathcal{O}_A$

C B i

 $W(x,y) = Tr \left[\frac{P_c}{P_c} \Phi(x) \Phi(y) \right]$ where $P_c \in \mathcal{C}_c$

 $G_{c} = \begin{cases} P \mid Tr[\hat{A}P] = Tr[\hat{A}P_{A}], \forall \hat{A} : Supp(\hat{A}) \in A, P_{A} \in G_{A} \end{cases}$ $G_{c} = \begin{cases} AND \quad Tr[\hat{B}P] = Tr[\hat{B}P], \forall \hat{B} : Supp(\hat{B}) \in A, P_{B} \in G_{B} \end{cases}$

... GNS CONSTRUCTION?

OPEN QUESTIONS

- 1. ASSESS IF OUR PRESCRIPTION IS

 VALID

 EXPERIMENTALLY AND THEORETICALLY
- 2. EXTEND TO N-POINT FUNCTIONS
 FOR N>2 (NO WICK'S THEOREM)
- 3. WHAT HAPPENS IN THE REGIONS OF SPACETIME THAT WE DID NOT CONSIDER?

SUMMARY

- 1. PROBLEMS WITH MEASUREMENTS IN QFT
- 2. TWO POSSIBLE SOLUTIONS
- 3. DETECTOR BASED MEASUREMENTS
- 4. PROBLEMS WITH THIS APPROACH
- 5. A TENTATIVE SOLUTION

TWO PROBLEMS WITH CONTEXTUAL STATES

$$W(x,Y) = \langle \phi(x)\phi(Y) \rangle$$

$$= \text{Tr} \left[P^{NS} \phi(x)\phi(Y) \right]$$

$$w(x) = \langle \phi(x) \rangle = \text{Tr} \left[\rho \phi(x) \right]$$
 where $\rho \in \sigma_A$

$$W(x,y) = Tr \left[? \phi(x) \phi(y) \right]$$

$$W(x,y) = Tr \left[P_B \phi(x) \phi(y) \right]$$
 where $P_B \in \mathcal{O}_B$

 $A_{\dot{x}}$

THE

SOLUTION

TO

SECON D

PROBLEM

$$W(x,y) = \left(\sqrt{P_2} \phi(y), \sqrt{P_4} \phi(x)\right) = \text{Tr}\left[\phi(y)\left(\sqrt{P_2}\right)^{\dagger} \sqrt{P_1} \phi(x)\right]$$

 $= Tr \left[\left(\int_{P_2}^{P_2} \right)^{\dagger} \int_{P_1}^{P_2} \phi(x) \phi(y) \right]$ where $P_1 \in \mathcal{O}_A$, $P_2 \in \mathcal{O}_B$ & $(A,B) = Tr \left[A^{\dagger} B \right]$